Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles.

Identifieur interne : 000C79 ( Main/Exploration ); précédent : 000C78; suivant : 000C80

Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles.

Auteurs : Jolanta Floryszak-Wieczorek [Pologne] ; Magdalena Arasimowicz-Jelonek [Pologne]

Source :

RBID : pubmed:27695047

Descripteurs français

English descriptors

Abstract

Our research provides new insights into how the low and steady-state levels of nitric oxide (NO) and reactive oxygen species (ROS) in potato leaves are altered after the challenge with the hemibiotroph Phytophthora infestans or the necrotroph Botrytis cinerea, with the subsequent rapid and invader-dependent modification of defense responses with opposite effects. Mainly in the avirulent (avr) P. infestans-potato system, NO well balanced with the superoxide level was tuned with a battery of SA-dependent defense genes, leading to the establishment of the hypersensitive response (HR) successfully arresting the pathogen. Relatively high levels of S-nitrosoglutathione and S-nitrosothiols concentrated in the main vein of potato leaves indicated the mobile function of these compounds as a reservoir of NO bioactivity. In contrast, low-level production of NO and ROS during virulent (vr) P. infestans-potato interactions might be crucial in the delayed up-regulation of PR-1 and PR-3 genes and compromised resistance to the hemibiotrophic pathogen. In turn, B. cinerea triggered huge NO overproduction and governed inhibition of superoxide production by blunting NADPH oxidase. Nevertheless, a relatively high level of H2O2 was found owing to the germin-like activity in cooperation with NO-mediated HR-like cell death in potato genotypes favorable to the necrotrophic pathogen. Moreover, B. cinerea not only provoked cell death, but also modulated the host redox milieu by boosting protein nitration, which attenuated SA production but not SA-dependent defense gene expression. Finally, based on obtained data the organismal cost of having machinery for HR in plant resistance to biotrophs is also discussed, while emphasizing new efforts to identify other components of the NO/ROS cell death pathway and improve plant protection against pathogens of different lifestyles.

DOI: 10.1371/journal.pone.0163546
PubMed: 27695047
PubMed Central: PMC5047594


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles.</title>
<author>
<name sortKey="Floryszak Wieczorek, Jolanta" sort="Floryszak Wieczorek, Jolanta" uniqKey="Floryszak Wieczorek J" first="Jolanta" last="Floryszak-Wieczorek">Jolanta Floryszak-Wieczorek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan</wicri:regionArea>
<wicri:noRegion>60-637 Poznan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arasimowicz Jelonek, Magdalena" sort="Arasimowicz Jelonek, Magdalena" uniqKey="Arasimowicz Jelonek M" first="Magdalena" last="Arasimowicz-Jelonek">Magdalena Arasimowicz-Jelonek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan</wicri:regionArea>
<wicri:noRegion>61-614 Poznan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27695047</idno>
<idno type="pmid">27695047</idno>
<idno type="doi">10.1371/journal.pone.0163546</idno>
<idno type="pmc">PMC5047594</idno>
<idno type="wicri:Area/Main/Corpus">000B05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B05</idno>
<idno type="wicri:Area/Main/Curation">000B05</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B05</idno>
<idno type="wicri:Area/Main/Exploration">000B05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles.</title>
<author>
<name sortKey="Floryszak Wieczorek, Jolanta" sort="Floryszak Wieczorek, Jolanta" uniqKey="Floryszak Wieczorek J" first="Jolanta" last="Floryszak-Wieczorek">Jolanta Floryszak-Wieczorek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan</wicri:regionArea>
<wicri:noRegion>60-637 Poznan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arasimowicz Jelonek, Magdalena" sort="Arasimowicz Jelonek, Magdalena" uniqKey="Arasimowicz Jelonek M" first="Magdalena" last="Arasimowicz-Jelonek">Magdalena Arasimowicz-Jelonek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan</wicri:regionArea>
<wicri:noRegion>61-614 Poznan</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis Proteins (MeSH)</term>
<term>Botrytis (metabolism)</term>
<term>Botrytis (pathogenicity)</term>
<term>Cell Death (MeSH)</term>
<term>Disease Resistance (genetics)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Glycoproteins (metabolism)</term>
<term>Hydrogen Peroxide (chemistry)</term>
<term>Nitric Oxide (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phytophthora infestans (metabolism)</term>
<term>Phytophthora infestans (pathogenicity)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Proteins (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Solanum tuberosum (metabolism)</term>
<term>Solanum tuberosum (microbiology)</term>
<term>Superoxides (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Botrytis (métabolisme)</term>
<term>Botrytis (pathogénicité)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Glycoprotéines (métabolisme)</term>
<term>Génotype (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Monoxyde d'azote (métabolisme)</term>
<term>Mort cellulaire (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peroxyde d'hydrogène (composition chimique)</term>
<term>Phytophthora infestans (métabolisme)</term>
<term>Phytophthora infestans (pathogénicité)</term>
<term>Protéines d'Arabidopsis (MeSH)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Solanum tuberosum (microbiologie)</term>
<term>Solanum tuberosum (métabolisme)</term>
<term>Superoxydes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Hydrogen Peroxide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glycoproteins</term>
<term>Nitric Oxide</term>
<term>Plant Proteins</term>
<term>Reactive Oxygen Species</term>
<term>Superoxides</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Arabidopsis Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Peroxyde d'hydrogène</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease Resistance</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Résistance à la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Botrytis</term>
<term>Phytophthora infestans</term>
<term>Plant Leaves</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Botrytis</term>
<term>Espèces réactives de l'oxygène</term>
<term>Feuilles de plante</term>
<term>Glycoprotéines</term>
<term>Monoxyde d'azote</term>
<term>Phytophthora infestans</term>
<term>Protéines végétales</term>
<term>Solanum tuberosum</term>
<term>Superoxydes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Botrytis</term>
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Botrytis</term>
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Death</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genotype</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génotype</term>
<term>Mort cellulaire</term>
<term>Oxydoréduction</term>
<term>Protéines d'Arabidopsis</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Our research provides new insights into how the low and steady-state levels of nitric oxide (NO) and reactive oxygen species (ROS) in potato leaves are altered after the challenge with the hemibiotroph Phytophthora infestans or the necrotroph Botrytis cinerea, with the subsequent rapid and invader-dependent modification of defense responses with opposite effects. Mainly in the avirulent (avr) P. infestans-potato system, NO well balanced with the superoxide level was tuned with a battery of SA-dependent defense genes, leading to the establishment of the hypersensitive response (HR) successfully arresting the pathogen. Relatively high levels of S-nitrosoglutathione and S-nitrosothiols concentrated in the main vein of potato leaves indicated the mobile function of these compounds as a reservoir of NO bioactivity. In contrast, low-level production of NO and ROS during virulent (vr) P. infestans-potato interactions might be crucial in the delayed up-regulation of PR-1 and PR-3 genes and compromised resistance to the hemibiotrophic pathogen. In turn, B. cinerea triggered huge NO overproduction and governed inhibition of superoxide production by blunting NADPH oxidase. Nevertheless, a relatively high level of H2O2 was found owing to the germin-like activity in cooperation with NO-mediated HR-like cell death in potato genotypes favorable to the necrotrophic pathogen. Moreover, B. cinerea not only provoked cell death, but also modulated the host redox milieu by boosting protein nitration, which attenuated SA production but not SA-dependent defense gene expression. Finally, based on obtained data the organismal cost of having machinery for HR in plant resistance to biotrophs is also discussed, while emphasizing new efforts to identify other components of the NO/ROS cell death pathway and improve plant protection against pathogens of different lifestyles.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27695047</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles.</ArticleTitle>
<Pagination>
<MedlinePgn>e0163546</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0163546</ELocationID>
<Abstract>
<AbstractText>Our research provides new insights into how the low and steady-state levels of nitric oxide (NO) and reactive oxygen species (ROS) in potato leaves are altered after the challenge with the hemibiotroph Phytophthora infestans or the necrotroph Botrytis cinerea, with the subsequent rapid and invader-dependent modification of defense responses with opposite effects. Mainly in the avirulent (avr) P. infestans-potato system, NO well balanced with the superoxide level was tuned with a battery of SA-dependent defense genes, leading to the establishment of the hypersensitive response (HR) successfully arresting the pathogen. Relatively high levels of S-nitrosoglutathione and S-nitrosothiols concentrated in the main vein of potato leaves indicated the mobile function of these compounds as a reservoir of NO bioactivity. In contrast, low-level production of NO and ROS during virulent (vr) P. infestans-potato interactions might be crucial in the delayed up-regulation of PR-1 and PR-3 genes and compromised resistance to the hemibiotrophic pathogen. In turn, B. cinerea triggered huge NO overproduction and governed inhibition of superoxide production by blunting NADPH oxidase. Nevertheless, a relatively high level of H2O2 was found owing to the germin-like activity in cooperation with NO-mediated HR-like cell death in potato genotypes favorable to the necrotrophic pathogen. Moreover, B. cinerea not only provoked cell death, but also modulated the host redox milieu by boosting protein nitration, which attenuated SA production but not SA-dependent defense gene expression. Finally, based on obtained data the organismal cost of having machinery for HR in plant resistance to biotrophs is also discussed, while emphasizing new efforts to identify other components of the NO/ROS cell death pathway and improve plant protection against pathogens of different lifestyles.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Floryszak-Wieczorek</LastName>
<ForeName>Jolanta</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arasimowicz-Jelonek</LastName>
<ForeName>Magdalena</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006023">Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11062-77-4</RegistryNumber>
<NameOfSubstance UI="D013481">Superoxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>123339-15-1</RegistryNumber>
<NameOfSubstance UI="C058814">germin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147445-32-7</RegistryNumber>
<NameOfSubstance UI="C077262">PR-1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020171" MajorTopicYN="N">Botrytis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016923" MajorTopicYN="N">Cell Death</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006023" MajorTopicYN="N">Glycoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013481" MajorTopicYN="N">Superoxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>07</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27695047</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0163546</ArticleId>
<ArticleId IdType="pii">PONE-D-16-29725</ArticleId>
<ArticleId IdType="pmc">PMC5047594</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2012 Oct 15;447(2):249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22835150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Jul;19(7):711-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16838784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):384-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):249-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(4):558-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15500471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jan;8(1):41-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 May;20(5):1390-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2002 May;28(5):997-1005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Jan;17(1):109-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14714874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Jun;16(6):300-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21482172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2015 Apr;112:72-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24713571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6957-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11381106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):404-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Nov;12(11):2191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11090218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Jun;72(8):681-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21429536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(2):230-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Feb 6;581(3):453-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17240373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2008 Apr;8(7):1459-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18297659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 Feb;25(2):79-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10664588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1993 Nov 1;214(2):500-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8109740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:369-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21568704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Apr;119(4):1251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):170-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Apr;6(4):553-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21422823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Jul;8(7):335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12878018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(4):718-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2006 Mar;96(3):299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 13;478(7368):264-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jan 22;9:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2875-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1986 Dec;82(4):1169-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Mar;17(3):245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15000391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Mar;27(6):1205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7766902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jul;211(2):516-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26916092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(6):1803-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21172815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18842-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17998535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):286-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19011003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(3):501-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e55879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23418468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Nov;34(11):1803-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21676000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 May;21(5):605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18393620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Sep;63(15):5507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22888126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jun;117(2):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9625702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 May;11(5):247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16616579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 25;7:709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27252724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Oct;12 (10 ):1823-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11041879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Mar;210(4):599-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10787053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2000 Mar;64(1):153-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10704478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21738471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2005 Oct;12(8):1047-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16241897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Jan 1;168(1):51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20674079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):673-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jun;202(4):1142-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24611485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Biochem Biophys. 2011 Feb;48(1):42-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21469601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Jul;228(2):331-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18446363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Apr;137(4):1354-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15778458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2017 Jan;18(1):16-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26780422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Feb;69(4):613-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21985584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 14;4:137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23717319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Nov;49(11):1711-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Talanta. 2007 Jun 15;72(4):1283-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19071757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Nov;55(11):1977-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25231969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jun;22(6):619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19445587</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Floryszak Wieczorek, Jolanta" sort="Floryszak Wieczorek, Jolanta" uniqKey="Floryszak Wieczorek J" first="Jolanta" last="Floryszak-Wieczorek">Jolanta Floryszak-Wieczorek</name>
</noRegion>
<name sortKey="Arasimowicz Jelonek, Magdalena" sort="Arasimowicz Jelonek, Magdalena" uniqKey="Arasimowicz Jelonek M" first="Magdalena" last="Arasimowicz-Jelonek">Magdalena Arasimowicz-Jelonek</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27695047
   |texte=   Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27695047" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024